2,869 research outputs found

    Gauge theory on nonassociative spaces

    Full text link
    We show how to do gauge theory on the octonions and other nonassociative algebras such as `fuzzy R4R^4' models proposed in string theory. We use the theory of quasialgebras obtained by cochain twist introduced previously. The gauge theory in this case is twisting-equivalent to usual gauge theory on the underlying classical space. We give a general U(1)-Yang-Mills example for any quasi-algebra and a full description of the moduli space of flat connections in this theory for the cube Z23Z_2^3 and hence for the octonions. We also obtain further results about the octonions themselves; an explicit Moyal-product description of them as a nonassociative quantisation of functions on the cube, and a characterisation of their cochain twist as invariant under Fourier transform.Comment: 24 pages latex, two .eps figure

    Braided Cyclic Cocycles and Non-Associative Geometry

    Full text link
    We use monoidal category methods to study the noncommutative geometry of nonassociative algebras obtained by a Drinfeld-type cochain twist. These are the so-called quasialgebras and include the octonions as braided-commutative but nonassociative coordinate rings, as well as quasialgebra versions \CC_{q}(G) of the standard q-deformation quantum groups. We introduce the notion of ribbon algebras in the category, which are algebras equipped with a suitable generalised automorphism σ\sigma, and obtain the required generalisation of cyclic cohomology. We show that this \emph{braided cyclic cocohomology} is invariant under a cochain twist. We also extend to our generalisation the relation between cyclic cohomology and differential calculus on the ribbon quasialgebra. The paper includes differential calculus and cyclic cocycles on the octonions as a finite nonassociative geometry, as well as the algebraic noncommutative torus as an associative example.Comment: 36 pages latex, 9 figure

    Towards Spinfoam Cosmology

    Get PDF
    We compute the transition amplitude between coherent quantum-states of geometry peaked on homogeneous isotropic metrics. We use the holomorphic representations of loop quantum gravity and the Kaminski-Kisielowski-Lewandowski generalization of the new vertex, and work at first order in the vertex expansion, second order in the graph (multipole) expansion, and first order in 1/volume. We show that the resulting amplitude is in the kernel of a differential operator whose classical limit is the canonical hamiltonian of a Friedmann-Robertson-Walker cosmology. This result is an indication that the dynamics of loop quantum gravity defined by the new vertex yields the Friedmann equation in the appropriate limit.Comment: 8 page

    Bicrossproduct structure of the null-plane quantum Poincare algebra

    Full text link
    A nonlinear change of basis allows to show that the non-standard quantum deformation of the (3+1) Poincare algebra has a bicrossproduct structure. Quantum universal R-matrix, Pauli-Lubanski and mass operators are presented in the new basis.Comment: 7 pages, LaTe

    Braided Matrix Structure of the Sklyanin Algebra and of the Quantum Lorentz Group

    Full text link
    Braided groups and braided matrices are novel algebraic structures living in braided or quasitensor categories. As such they are a generalization of super-groups and super-matrices to the case of braid statistics. Here we construct braided group versions of the standard quantum groups Uq(g)U_q(g). They have the same FRT generators l±l^\pm but a matrix braided-coproduct \und\Delta L=L\und\tens L where L=l+Sl−L=l^+Sl^-, and are self-dual. As an application, the degenerate Sklyanin algebra is shown to be isomorphic to the braided matrices BMq(2)BM_q(2); it is a braided-commutative bialgebra in a braided category. As a second application, we show that the quantum double D(\usl) (also known as the `quantum Lorentz group') is the semidirect product as an algebra of two copies of \usl, and also a semidirect product as a coalgebra if we use braid statistics. We find various results of this type for the doubles of general quantum groups and their semi-classical limits as doubles of the Lie algebras of Poisson Lie groups.Comment: 45 pages. Revised (= much expanded introduction

    Single-, Dual- and Triple-band Frequency Reconfigurable Antenna

    Get PDF
    The paper presents a frequency reconfigurable slot dipole antenna. The antenna is capable of being switched between single-band, dual-band or triple-band operation. The antenna incorporates three pairs of pin-diodes which are located within the dipole arms. The antenna was designed to operate at 2.4 GHz, 3.5 GHz and 5.2 GHz using the aid of CST Microwave Studio. The average measured gains are 1.54, 2.92 and 1.89 dBi for low, mid and high band respectively. A prototype was then constructed in order to verify the performance of the device. A good level of agreement was observed between simulation and measurement

    Generalized exclusion and Hopf algebras

    Full text link
    We propose a generalized oscillator algebra at the roots of unity with generalized exclusion and we investigate the braided Hopf structure. We find that there are two solutions: these are the generalized exclusions of the bosonic and fermionic types. We also discuss the covariance properties of these oscillatorsComment: 10 pages, to appear in J. Phys.

    Spectral noncommutative geometry and quantization: a simple example

    Get PDF
    We explore the relation between noncommutative geometry, in the spectral triple formulation, and quantum mechanics. To this aim, we consider a dynamical theory of a noncommutative geometry defined by a spectral triple, and study its quantization. In particular, we consider a simple model based on a finite dimensional spectral triple (A, H, D), which mimics certain aspects of the spectral formulation of general relativity. We find the physical phase space, which is the space of the onshell Dirac operators compatible with A and H. We define a natural symplectic structure over this phase space and construct the corresponding quantum theory using a covariant canonical quantization approach. We show that the Connes distance between certain two states over the algebra A (two ``spacetime points''), which is an arbitrary positive number in the classical noncommutative geometry, turns out to be discrete in the quantum theory, and we compute its spectrum. The quantum states of the noncommutative geometry form a Hilbert space K. D is promoted to an operator *D on the direct product *H of H and K. The triple (A, *H, *D) can be viewed as the quantization of the family of the triples (A, H, D).Comment: 7 pages, no figure

    Unbraiding the braided tensor product

    Full text link
    We show that the braided tensor product algebra A1⊗‟A2A_1\underline{\otimes}A_2 of two module algebras A1,A2A_1, A_2 of a quasitriangular Hopf algebra HH is equal to the ordinary tensor product algebra of A1A_1 with a subalgebra of A1⊗‟A2A_1\underline{\otimes}A_2 isomorphic to A2A_2, provided there exists a realization of HH within A1A_1. In other words, under this assumption we construct a transformation of generators which `decouples' A1,A2A_1, A_2 (i.e. makes them commuting). We apply the theorem to the braided tensor product algebras of two or more quantum group covariant quantum spaces, deformed Heisenberg algebras and q-deformed fuzzy spheres.Comment: LaTex file, 29 page

    Multiband monopole antenna for mobile applications

    Get PDF
    — In this paper, a multiband monopole antenna has been proposed for mobile applications. The monopole antenna has simple structure with a physical size of 15 cm × 7 cm. The antenna consists of monopole shape loaded by a set of folded arms with a varying length which lead to a better impedance matching result and multiband performance. The simulated results show that the proposed antenna provide multiband frequency operation of 0.8 GHz, 1.8 GHz 2.1 GHz, 2.6 GHz and 3.5 GHz which covers the range from 0 to 4 GHz. The antenna is designed to operate at sub-6 GHz which proposed as lower frequency band to deliver 5G in early stage. The designed antenna has been fabricated and measured to validate the simulated results. RF Coaxial U.FL Connector was used as the port connector. The measurement results agrees well with the simulated ones for all frequency bands
    • 

    corecore